Background

OSPAR’s strategic objective with regard to eutrophication is to combat eutrophication in the OSPAR Maritime Area, with the ultimate aim to achieve and maintain a healthy marine environment where anthropogenic eutrophication does not occur. Trends in blooms of nuisance phytoplankton species *Phaeocystis* is one of a suite of five eutrophication indicators. When assessed and considered together in the OSPAR Common Procedure in a multi-step method, the suite can diagnose eutrophication.

Excessive enrichment of marine water with nutrients may lead to algal (phytoplankton) blooms, with the possible consequence of undesirable disturbance to the balance of organisms in the marine ecosystem and overall water quality. Undesirable disturbance includes shifts in the composition and extent of flora and fauna and depletion of oxygen caused by decomposition of accumulated organic material produced by phytoplankton or seaweed communities during their growing seasons. *Phaeocystis* is a widespread marine phytoplankton. As it breaks down at the end of a bloom foam can form. It is used as an indicator of eutrophication because increased concentrations of more than 10^6 or 10^7 *Phaeocystis* cells per litre of seawater and increased duration of *Phaeocystis* blooms per year are an indication of nutrient enrichment.

Results

Three countries’ *Phaeocystis* monitoring data are used in this assessment; Belgium (1990–2009), the Netherlands (1990–2014) and Germany (2001–2014). Monitoring sites with available *Phaeocystis* data are located in coastal waters; these are mostly inshore and along some transects perpendicular to the coast (Figure 1).

Image (left): *Phaeocystis*, shown here on the beach of Spiekeroog, Germany ©Wera Leujak, Umweltbundesamt

Figure 1 (right): Sites monitored for *Phaeocystis* by Belgium (BE), the Netherlands (NL) and Germany (DE) (2003–2012)
Conclusion

High concentrations of the nuisance marine phytoplankton Phaeocystis in coastal waters (often above one million cells per litre with peaks of up to 100 million cells per litre), with concentrations decreasing offshore, can occur in response to high nutrient concentrations, and may be indicative of eutrophication.

This assessment shows Phaeocystis blooms peak during the summer growing season (April–June) in the southern North Sea. The size of the blooms varies widely from year to year with seasonal average concentrations from near zero to over five million cells per litre. These fluctuations are probably affected by a combination of different factors, such as light, temperature, salinity, other hydrodynamic influences and nutrient availability. However, nutrient concentrations were more consistent and less variable than Phaeocystis concentrations in the southern North Sea (see nutrient concentrations assessment). Furthermore, no statistically significant temporal or spatial trends could be observed in the analysed data.

Knowledge Gaps

The availability of Phaeocystis data for the assessment was regionally restricted to the southern North Sea. The duration of blooms was difficult to determine owing to restricted sampling. Recent Phaeocystis data have yet to be fully reported and stored at the International Council for the Exploration of the Sea (ICES). The contributions of Phaeocystis to total phytoplankton biomass should be estimated to allow representative assessment in relation to chlorophyll-a concentrations.

Further research is needed to identify the reasons for the strong interannual variability in cell concentrations.